VCE40 Series

AC-DC Power Supplies

40 Watts

- 85 to 305VAC input
- Single outputs from 3.3 to 48VDC
- PCB mount
- Encapsulated & open frame
- ITE & household appliance approvals
- EN55035 immunity standard
- Class II
- Low cost
- 3 year warranty

The VCE40 is a series of open frame and encapsulated AC-DC single output power supplies designed for low cost ITE, industrial and domestic applications. The series provides two mechanical options including open frame and encapsulated PCB mount. With approvals to world-wide safety standards including ITE and Household, compliance with class B for conducted and radiated emissions, these class II isolation parts benefit system designers with easy integration into a wide range of applications.

Dimensions:

VCE40:

3.46 x 1.50 x 1.12" (87.9 x 38.1 x 28.5 mm)

VCE40-P:

 $3.35 \times 1.38 \times 1.09$ " (85.0 × 35.1 × 27.7 mm)

Models & Ratings

Output Power	Output Voltage	Output Current	Model Number ⁽¹⁾
30 W	3.3 VDC	9.10 A	VCE40US03
40 W	5.0 VDC	8.00 A	VCE40US05
40 W	9.0 VDC	4.44 A	VCE40US09
40 W	12.0 VDC	3.33 A	VCE40US12
40 W	15.0 VDC	2.66 A	VCE40US15
40 W	24.0 VDC	1.66 A	VCE40US24
40 W	48.0 VDC	0.82 A	VCE40US48

Notes

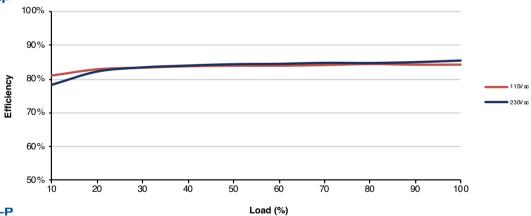
1. For Open Frame version add suffix -P to model number, e.g. VCE40US12-P.

Summary

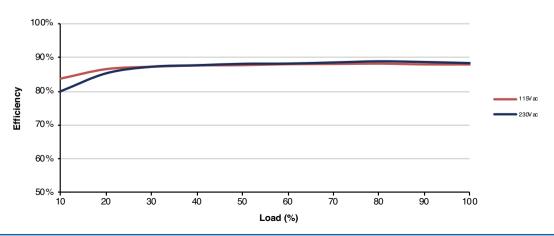
, , , , , , , , , , , , , , , , , , ,							
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions		
Input Voltage Range	85		305	VAC	Derate output from 100% at 90 VAC to 90% at 85 VAC		
No Load Input Power			0.3	W			
Efficiency		85		%	Model dependant		
Operating Temperature	-25		+70	°C	3V3 & 5V models: derate output linearly from 100% at +45 °C to 45% at +70 °C. Other models: derate output linearly from 100% at 50 °C to 50% at 70 °C.		
EMC	EN55032 Level	EN55032 Level B Conducted & Radiated, EN601000-3-2, EN61000-3-3, EN55024					
Safety Approvals	IEC62368-1, IEC	C60335-1, IEC6095	50-1, EN62368-1, I	EN60335-1, UL62	368-1		

ln	PALIE	•
ш		ш

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Input Voltage Range	85		305	VAC	Derate from 100% at 90 VAC to 90% at 85 VAC
Input Frequency	47		63	Hz	
Input Current - Full Load		0.7/0.4		A rms	At 115/230 VAC
No Load Input Power			0.3	W	
Inrush Current			40	А	At 230 VAC, cold start 25 °C
Earth Leakage Current					Class II construction no earth
Input Protection	Internal T1.0 A/3	300 VAC fuse fitted	l in line		



Output					
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Output Voltage	3.3		48	VDC	
Initial Set Accuracy			1.5/1.0	%	1.5% for 3V3 & 5 V models, 1% for others at 50% load
Minimum Load	0			А	No minimum load required
Line Regulation			1	%	
Load Regulation			2	%	
Start Up Delay			2	S	
Start Up Rise Time			35	ms	
Hold Up Time	8	14		ms	at full load and 115 VAC
Transient Response			4	%	Deviation, recovery within 1% in less than 500 μs for a 25% load change
Ripple & Noise			100	mV pk-pk	3V3 & 5 V models, 20 MHz bandwidth
rippie & Noise			1	% pk-pk	9 to 48 V models, 20 MHz bandwidth
Overvoltage Protection	115		140	% Vnom	210% typical for 3V3 model, auto recovery
Overload Protection	110		190	%	
Short Circuit Protection					Trip & Restart (hiccup mode)
Temperature Coefficient			0.05	%/°C	


General					
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Efficiency		85		%	Model Dependant
Isolation: Input to Output	3000			VAC	
Switching Frequency	5		65	kHz	Varied with load
Power Density			7.7	W/in³	For '-P' version
Mean Time Between Failure	550	600		kHrs	MIL-HDBK-217F, +25 °C GB
Weight		0.187 (85)		lb (g)	Open frame versions (-P)
vveigi it		0.419 (190)		lb (g)	Encapsulated version

Efficiency Graphs

VCE40US12-P

VCE40US24-P

Environmental

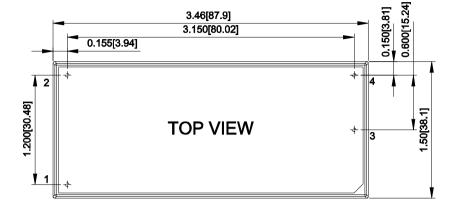
Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Operating Temperature	-25		+70	°C	3V3 & 5V models: derate output linearly from 100% at +45 °C to 45% at +70 °C. Other models: derate output linearly from 100% at 50 °C to 50% at 70 °C.
Storage Temperature	-40		+85	°C	
Cooling					Convection-cooled
Humidity			95	%RH	Non-condensing
Operating Altitude			5000	m	
Shock	IEC68-2-27, 30 g	, 11 ms half sine,	3 times in each of	6 axes	
Vibration	IEC68-2-6, 2 g,	10 Hz to 500 kHz,	10 mins/cycle, 60	mins each cycle)

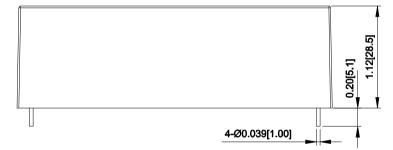
EMC: Emissions

Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Conducted	EN55032	Class B		
Radiated	EN55032	Class B		
Harmonic Current	EN61000-3-2			Class A
Voltage Flicker	EN61000-3-3			

EMC: Immunity

Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
ITE	EN55035	As Below	As Below	
ESD	EN61000-4-2	±6kV contact, ±8kV air discharge	А	
Radiated	EN61000-4-3	10 V/m	А	
EFT	EN61000-4-4	3	А	
Surge	EN61000-4-5	2	А	Line to Line
Conducted	EN61000-4-6	10 Vrms	А	
Magnetic Fields	EN61000-4-8	30 A/m	Α	
	EN61000-4-11 (115 VAC)	70% U₁ (80.5 VAC) for 100 ms	Α	
		40% U₁ (46 VAC) for 200 ms	В	
		<5% U₁ (0 VAC) for 10 ms	Α	
Dips and Interruptions		<5% U₁ (0 VAC) for 5000 ms	В	
Dips and interruptions		70% U₁ (161 VAC) for 100 ms	Α	
	EN61000-4-11 (230 VAC)	40% U₁ (92 VAC) for 200 ms	А	
	EINO 1000-4-11 (230 VAC)	<5% U₁ (0 VAC) for 10 ms	А	
		<5% U₁ (0 VAC) for 5000 ms	В	


Safety Approvals


Safety Agency	Safety Standard	Notes & Conditions
	IEC60950-1	ITE
СВ	IEC62368-1	
	IEC60335-1	Household
UL	UL62368-1	ITE
TUV	EN62368-1	ITE
CE	Meets all applicable directives	
UKCA	Meets all applicable legislation	

Mechanical Details

Encapsulated

Open Frame (-P)

Pin Connections				
Pin	Single			
1	ACL			
2	ACN			
3	-Vout			
4	+Vout			

3.35[85.0] 17 10 10 10 10 10 10 10	
\$\ 6 \ \ \ \ \ \ \ \ \ \ \ \ \ \	
0.09 0.09 3 1.38 36.11	
0.09[2]	
1	
	×
0.15[3.8] 0.11[2.8]max 0.11[2.8]max	1.09[27.7]max
8.3 12.8 12.8 1.2 1.3	9[27.
0.15[3.8] 0.11[2.4] 0.96[24]	위
	+
4-Ø0.039[1.00]	
4-Ø0.071[1.80]	
3.150[80.02]	

Notes

1. Dimensions in inches (mm).

2. Weight: Open frame versions (-P): 0.187 lbs (85 g) Encapsulated: 0.419 lbs (190 g) 3. Tolerances:

 $x.xx = \pm 0.02 (x.x = \pm 0.5)$ $x.xxx = \pm 0.01 (x.xx = \pm 0.25)$