

750W Baseplate cooled

The QHL750 series provides a compact 750W DC-DC solution in an industry standard full brick package with a nominal 300VDC input and an operating range of 180 to 425VDC. This series of modules enables effective construction of distributed power architectures from AC front ends, PFC front ends, baseplate cooled ESG solutions and high voltage battery applications.

Utilizing the integral baseplate for conduction cooling gives the designer flexibility in system design. Constructed with reinforced insulation, the QHL series features an industrial operating temperature range and includes protection for over current, over temperature and over voltage.

Features

- ▶ Regulated single outputs from 12 to 48VDC
- ▶ Output voltage trim -40%/+10%
- ▶ 200 to 425VDC input range
- ▶ 3.0kVAC isolation
- Industry standard full brick package
- ▶ Baseplate cooled
- ▶ High efficiency up to 90%
- ► ITE safety approvals
- Short circuit, overvoltage & overtemperature protection
- ▶ Current share and power good signals
- ▶ Remote On/Off
- ▶ -40°C to +85°C operating temperature
- ▶ 3 year warranty

Applications

Technology

Industrial

Instrumentation

Robotics

Dimensions

 $116.8 \times 61.0 \times 12.7 \text{mm} (4.6" \times 2.4" \times 0.5")$ Full brick package

Documentation

For further information click the link or scan the code

Models & ratings

Model number ⁽²⁾	In must ve lite an	Outnutwelters	Output current	Input o	current	Dinula C naisa	Efficiency	Max. capacitive load	
	Input voltage	Output voltage	Output current	No load	Full load	Ripple & noise	Efficiency		
QHL750300S12		12VDC	62.5A	10mA	2.79A	300mV	89.5%	10000μF	
QHL750300S15		15VDC	50.0A	10mA	2.81A	300mV	89.0%	10000µF	
QHL750300S24	300V (200-425V)	24VDC	31.2A	10mA	2.78A	400mV	90.0%	10000μF	
QHL750300S28	(200-420V)	28VDC	26.7A	10mA	2.73A	400mV	90.5%	10000μF	
QHL750300S48		48VDC	15.6A	10mA	2.75A	650mV	91.0%	8000µF	

Notes:

- 1. Measured at 300VDC input.
- 2. Peak to peak measured at 20MHz bandwidth and 1000 μ F electrolytic/1 μ F ceramic capacitors.
- 3. Recommended input capacitance of $330\mu F$ required to reduce input ripple voltage at $-40^{\circ}C$ operation or $150\mu F$ for operation to $-20^{\circ}C$. See application notes.
- 4. Optional negative logic add suffix -N for module enable/disable function. See output table.

Input

Characteristic	Minimum	Typical	Maximum	Units	Notes & conditions
Input voltage range	200		425	VDC	
Input current	1.8		3.9	А	200-425VDC input.
Input surge			475	VDC	For 100ms.
I lo deminita de la elizació	>185	190	195	VDC	On.
Undervoltage lockout	<175	480	185	VDC	Off.
Lockout hysteresis		10		VDC	
Input transient voltage			475	VDC	For 100ms.
Input overvoltage lockout		480/500		VDC	Module on / module off
Idle current		10		mA	When output is remotely turned off.
Inrush current			0.1	A ² s	
Recommended input fuse		10		А	Fast acting type.
Input reflected ripple current			50	mA pk-pk	Through 10µH inductor.

Output

Characteristic	Minimum	Typical	Maximum	Units	Notes & conditions				
Output voltage	12		48	VDC	See models and ratings table.				
Output trim	-40		+10	%	See application note.				
Initial set accuracy			±1.0	%	At full load and 300V input.				
Minimum load	No minimum	load required							
Line regulation			±0.2	%	From minimum to maximum input at full load.				
Load regulation			±0.5	%	From 0% to full load.				
Transient response		±3.0	±5.0	%	Maximum deviation, recovering to less than 1% in 500µs for 25% step load change.				
Start up time			700	ms					
Output voltage rise time		40							
Ripple & noise	See models	and ratings tabl	e.						
Overload protection	105		125	%					
Short circuit protection	Continuous h	niccup mode, w	rith auto recover	у.					
Maximum capacitive load	See models	and ratings tabl	le, minimum cap	pacitance of 10	00μF required to meet specified regulations.				
Temperature coefficient			0.03	%/°C					
Overvoltage protection	115	125	140	%					
Remote on/off	Output turns	Output is on if REM+ (pin 4) is open or high (3.5-75VDC) with respect to REM- (pin 3) or -Vin. Output turns off if REM+ (pin 4) is low (<1.2VDC max) with respect to REM- (pin 3) or -Vin (see application notes). Default positive logic, for negative logic add suffix -N.							

General

Characteristic	Minimum	Typical	Maximum	Units	Notes & conditions		
Efficiency		90		%	See models & ratings table		
Isolation: input to output	3000			VAC	60s, reinforced		
Isolation: input to case	2500			VAC	60s, basic		
Isolation: output to case	500			VAC	60s, functional		
Switching frequency		200		kHz	Fixed, ±15%		
Isolation resistance	10 ⁹			Ω			
Power density			8.2 (135)	Wcm ^{3 (} W/in ³⁾			
Mean time between failure		370		kHrs	MIL-HDBK-217F, +25°C GB		
Pin material	Copper with	nickel and matt	te tin plating				
Case material	Plastic (DAP)	with aluminium	n, UL94V-0				
Potting material	Epoxy, UL94	V-0					
Solder profile			260	°C	Above 250°C. 3-6s. With iron 450°C for <5s		
Water wash	Use deionize	e deionized water, do not soak. Dry thoroughly					
Weight			230.0 (0.51)	g (lbs)			

Environmental

Characteristic	Minimum	Typical	Maximum	Units	Notes & conditions
Operating base plate temperature	-40		+85	°C	
Storage temperature	-55		+105	°C	
Thermal protection		+95		°C	Auto recovery at 75°C typical.
Humidity			95	%RH	Non-condensing.
Altitude			2000	m	Operating. Storage to 12000m.
Cooling	Baseplate co	ooled			

EMC: emissions

Phenomenon	Standard	Test level	Notes & conditions
Conducted	EN55032	A	See application notes
Radiated	EN55032	A	

Emissions - immunity

Phenomenon	Standard	Test level	Criteria	Notes & conditions
ESD immunity	EN61000-4-2	±4kV contact, 8kV air	Α	
Radiated immunity	EN61000-4-3	-4-3 3Vrms		
EFT/burst	EN61000-4-4	EN61000-4-4 1kV		Requires VZ1, VZ2, GT1 & GT2 as shown in conducted emission circuit.
Surge	EN61000-4-5	0.5kV	Α	Requires VZ1, VZ2, GT1 & GT2 as shown in conducted emission circuit.
Conducted	EN61000-4-6	3Vrms	Α	
Magnetic fields	EN61000-4-8	3A/m	Α	

Safety approvals

Safety agency	Standard	Test level	Notes & conditions				
CE	LVD	EN62368-1					
CE	Meets all applicable directives						
UKCA	Meets all applicable legislati	on					

Application notes

Input fusing and safety considerations


The QHL750 series converters have no internal fuse. In order to achieve maximum safety and system protection, always use an input line fuse. We recommended a 10A fast acting fuse. It is also recommended that the circuit has a transient voltage suppressor diode (TVS) across the input terminals to protect the unit against surge or spike voltages and input reverse voltage (as shown). A suitable part would be SMCJ78A.

Output voltage adjustment

The Trim input permits the user to adjust the output voltage up by 10% or down by 40%. This is accomplished by connecting a mandatory external resistor between the Trim pin and negative sense pin of value 6.8kOhm. Then select Ru or Rd to determine desired output voltage.

To trim down (Rd)

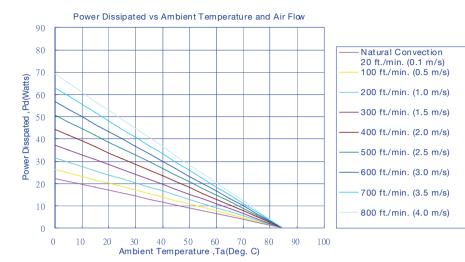
Trim Down %	12VDC	15VDC	24VDC	28VDC	48VDC		
Irim Down %		R	trim_down (kg	2)			
1	10.63	13.29	21.26	24.80	42.51		
2	10.40	13.00	20.80	24.27	41.60		
3	10.17	12.71	20.34	23.73	40.69		
4	9.943	12.43	19.89	23.20	39.77		
5	9.714	12.14	19.43	22.67	38.86		
6	9.486	11.86	18.97	22.13	37.94		
7	9.257	11.57	18.51	21.60	37.03		
8	9.029	11.29	18.06	21.07	36.11		
9	8.800	11.00	17.60	20.53	35.20		
10	8.571	10.71	17.14	20.00	34.29		
11	8.343	10.43	16.69	19.47	33.37		
12	8.114	10.14	16.23	18.93	32.46		
13	7.886	9.857	15.77	18.40	31.54		
14	7.657	9.571	15.31	17.87	30.63		
15	7.429	9.286	14.86	17.33	29.71		
16	7.200	9.000	14.40	16.80	28.80		
17	6.971	8.714	13.94	16.27	27.89		
18	6.743	8.429	13.49	15.73	26.97		
19	6.514	8.143	13.03	15.20	26.06		
20	6.286	7.857	12.57	14.67	25.14		
21	6.057	7.571	12.11	14.13	24.23		
22	5.829	7.286	11.66	13.60	23.31		
23	5.600	7.000	11.20	13.07	22.40		
24	5.371	6.714	10.74	12.53	21.49		
25	5.143	6.429	10.29	12.00	20.57		
26	4.914	6.143	9.829	11.47	19.66		
27	4.686	5.857	9.371	10.93	18.74		
28	4.457	5.571	8.914	10.40	17.83		
29	4.229	5.286	8.457	9.867	16.91		
30	4.000	5.000	8.000	9.333	16.00		
31	3.771	4.714	7.543	8.800	15.09		
32	3.543	4.429	7.086	8.267	14.17		
33	3.314	4.143	6.629	7.733	13.26		
34	3.086	3.857	6.171	7.200	12.34		
35	2.857	3.571	5.714	6.667	11.43		
36	2.629	3.286	5.257	6.133	10.51		
37	2.400	3.000	4.800	5.600	9.600		
38	2.171	2.714	4.343	5.067	8.686		
39	1.943	2.429	3.886	4.533	7.771		
40	1.714	2.143	3.429	4.000	6.857		

Output voltage sensing

The module will automatically trim the output voltage via the sense pins to the default values either locally or at the load. If not required, the sense pins should be connected locally as indicated in the example EMC circuit.

To trim up (Ru)

T-i D 0/	12VDC	15VDC	24VDC	28VDC	48VDC							
Trim Down %	Rtrim_up (kΩ)											
1	11.09	13.86	22.17	25.87	44.34							
2	11.31	14.14	22.63	26.40	45.26							
3	11.54	14.43	14.43 23.09		46.17							
4	11.77	14.71	23.54	27.47	47.09							
5	12.00	15.00	24.00	28.00	48.00							
6	12.23	15.29	24.46	28.53	48.91							
7	12.46	15.57	24.91	29.07	49.83							
8	12.69	15.86	25.37	29.60	50.74							
9	12.91	16.14	25.83	30.13	51.66							
10	13.14	16.43	26.29	30.67	52.57							


Power good signal

Open collector output, referenced to -Sense Pin. Output is pulled low if DC/DC is operating normally and floating if DC/DC is remotely turned off or operating abnormally.

Application notes

Thermal resistance - airflow derating curve - without heatsink

Air Flow Rate	Typical Rca
Natural Convection 20 ft/min (0.1 m/s)	3.82°C/W
100 ft/min (0.5 m/s)	3.23°C/W
200 ft/min (1.0 m/s)	2.71°C/W
300 ft/min (1.5 m/s)	2.28°C/W
400 ft/min (2.0 m/s)	1.92°C/W
500 ft/min (2.5 m/s)	1.68°C/W
600 ft/min (2.5 m/s)	1.50°C/W
700 ft/min (2.5 m/s)	1.35°C/W
800 ft/min (2.5 m/s)	1.23°C/W
500 ft/min (2.5 m/s) 600 ft/min (2.5 m/s) 700 ft/min (2.5 m/s)	1.68°C/W 1.50°C/W 1.35°C/W

Example (without heatsink)

To determine the minimum airflow necessary for a QHL750300S48 operating at an input voltage of 300 V, an output current of 11A, and a maximum ambient temperature of 25°C:

Determine Power dissipation (Pd): Pd = Pi-Po = Po $(1-\eta)/\eta$,

Pd = 48V × 11A × (1-0.91) / 0.91 = 47.47W

Where Pi = Input power, Po = Output Power and η = Efficiency

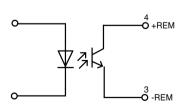
Determine airflow from airflow derating graph using data points for Pd = 47.4W and Ta = $25^{\circ}C$

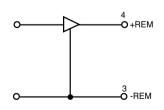
Minimum airflow= 800ft./min.

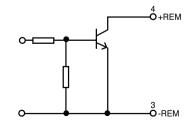
To check that the maximum case temp of 85°C is not exceeded:

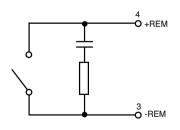
Maximum temperature rise is

 $\Delta T = Pd \times Rca = 47.47 \times 1.23 = 58.38$ °C.

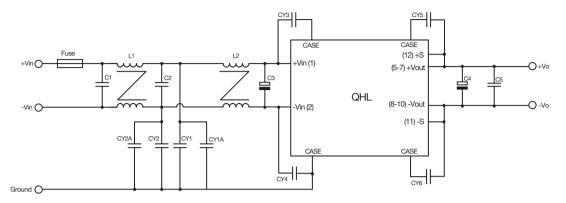

Maximum case temperature is


 $Tc = Ta + \Delta T = 83.38$ °C < 85°C.


Where: Rca is the thermal resistance from case to ambient environment. Ta is ambient temperature and Tc is case temperature.


Remote control

Example application circuits



Application notes

EMC considerations

Connection circuit for EMI test standard: EN55022/55032 Class A conducted emissions

C1	C1	C2	C3	C4	C5	CY1	CY1A	CY2	CY2A	CY3	CY4	CY5	CY6	L1	L2
QHL750300Sxx	0.68µF/ 305VAC/ 630VDC	0.68µF/ 305VAC/ 630VDC	330µF/ 450V	820µF/ 63V	1μF/ 100V	2200pF	470pF	2200pF	470pF	2200pF	2200pF	0.022µF	0.022µF	4.2mH	4.2mH

Notes:

C3 and C4: aluminium electrolytic capacitors

C3: is recommended to be $330\mu F$ 450V for operation to -40°C type Nippon Chemi-Con KXG series or equivalent. The value of C3 can be reduced to $150\mu F$ for operation to -20°C.

C4: 820µF / 63V Rubycon ZLH series or equivalent

CY1, CY1A, CY2, CY2A, CY3 and CY4: Ceramic TDK CD series or equivalent.

Safety considerations

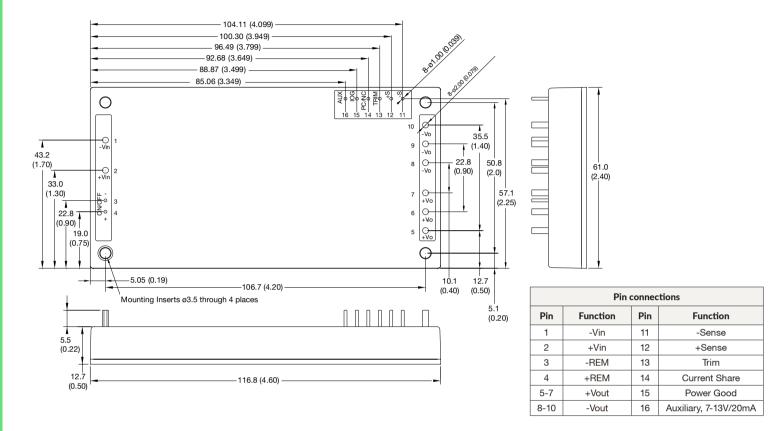
The use of a fuse on the input line is recommended for good practice. Additional protection for surges and reverse voltage are also recommended. Transient voltage suppressors and gas discharge devices can be fitted across the input terminals.

Series & parallel configurations

Please contact XP Power applications engineering for further details.

C5: Ceramic TDK CGA series or equivalent

C1, C2, CY5 and CY6: 0.68 μ / 305VAC X2 rated MKP series, 0.022 μ F / 275VAC X2 rated MPX series – or equivalent


L1, L2: 4.2 mH (VAKOS T25*15*13 R8K Series 0.8mm/20T) or equivalent.

Ground connection

The above circuit assumes an earth connection is available. If no earth present CY capacitors should be connected to case as shown. CY values might require adjustment depending on the application. Please consult XP Power applications engineering for further support.

Mechanical details

Notes:

- 1. All dimensions are in mm (inches)
- 2. Weight: 230g (0.51lbs) approx.

- 3. Tolerance: $x.x = \pm 0.5$ ($x.xx = \pm 0.02$), $x.xx = \pm 0.25$ ($x.xxx = \pm 0.01$)
- 4. Optional M3 x 0.5 threaded baseplate fixing add suffix -T.