

- Screw Terminals Available
- U Channel & Cover Fan Formats
- High Power Density 11.1 W/in³
- 5 V Standby & 12 V Fan Outputs
- Active Current Share
- Remote On/Off
- AC & DC OK Signals
- -10 °C to +70 °C Operation
- Level B Conducted Emissions

The MFA350 has been designed with multiple mechanical options to facilitate its integration into a wide range of applications. Designers of these systems demand higher power from AC-DC units in industry-standard formats as processing power and functionality grows within tight space constraints. The MFA350 delivers over 350 W across the full universal AC input range from an industry-standard 3.2 x 6.8 inch (81.3 x 172.7 mm) footprint. It is 1.5 inches (38.1 mm) high and achieves 11.1 Watts per cubic inch power density without compromising performance or functionality.

With efficiency up to 88% at full load, the MFA350 operates up to 50 °C ambient and up to 70 °C ambient with derating. The main output is 12, 24 or 48 VDC but each power supply also has a 5 V, 0.3 A standby output and a 12 V, 1A output for powering fans. The unit incorporates a fully featured signal set including AC OK/DC OK, remote on/off and active current sharing.

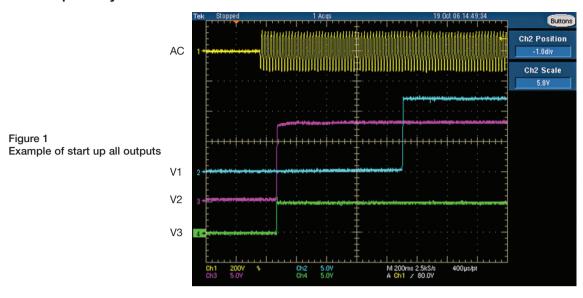
Models and Ratings

Output Voltage V1	Maximum Output Current	Fan Output ⁽²⁾ V2	Standby Supply V3	Max Power 13 CFM Airflow	Model Number (1)
12.0 VDC	29.0 A	12 V/1 A	5 V/0.3 A	361 W	MFA350PS12
24.0 VDC	14.5 A	12 V/1 A	5 V/0.3 A	361 W	MFA350PS24
48.0 VDC	7.3 A	12 V/1 A	5 V/0.3 A	364 W	MFA350PS48

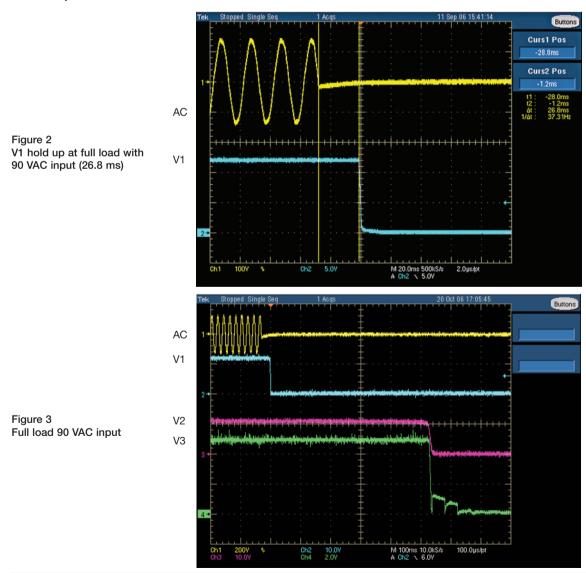
Notes

1. Units supplied with AMP/TE connections for J1 & J2 as standard. Add suffix '-S' to model number to replace with screw terminals. Add suffix '-TF' for covered version with top fan and suffix '-EF' for covered version with end fan. Example:- MFA350PS12-STF, 12 V unit fitted with screw terminals and top fan.

2. Not available for -TF & -EF versions.


Input Characteristics

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Input Voltage - Operating	85		264	VAC	Derate output power 10% < 90 VAC
Input Frequency	47	50/60	63	Hz	
Power Factor		>0.9			EN61000-3-2 class A
Power Factor	70.9	>0.9			EN61000-3-2 class C for loads ≥20%
Input Current - No Load		100		mA	
Input Current - Full Load		3.6/1.8		А	115/230 VAC
Inrush Current			60	А	230 VAC cold start
Earth Leakage Current		1		mA	230 VAC/50 Hz
Input Protection	T6.3A/250 V inte	ernal fuse in line			


Output Characteristics

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Output Voltage - V1	12		48	VDC	See Models and Ratings table
Initial Set Accuracy			±1 (V1), ±5 (V2) & ±3 (V3)	%	
Output Voltage Adjustment	±10			%	
Minimum Load	0				No minimum load required
Start Up Delay		1	2	S	90 VAC full load (see fig. 1)
Hold Up Time	16	20		ms	90 VAC full load (see fig. 2 & 3)
Drift			±0.2	%	After 20 min warm up
Line Regulation			±0.5(V1), ±3(V2) & ±3(V3)	%	
Load Regulation			±1 (V1), ±5 (V2) & ±3 (V3)	%	0-100% load. V2 10-100% load
Transient Response - V1			4	%	Recovery within 1% in less than 500 µs for a 50-75% and 75-50% load step
Over/Undershoot - V1			1	%	(see fig. 4)
Ripple & Noise			1 (V1 & V3) & 2 (V2)	% pk-pk	20 MHz bandwidth (see fig. 6 & 7)
Overvoltage Protection	115		140	%	Vnom DC. Output 1 only, recycle input to reset
Overload Protection	110		140	% I nom	Output 1 only, auto reset (see fig. 5)
Short Circuit Protection					Continuous
Temperature Coefficient			0.05	%/°C	
Overtemperature Protection		75		°C	Thermal sensor under PCB

Start Up Delay From AC Turn On

Hold Up Time From Loss of AC

Output Overshoot

Figure 4 Typical Output Overshoot (MFA350PS12)

Output Overload Characteristic

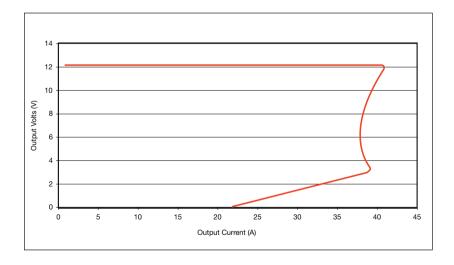


Figure 5

Output Ripple & Noise

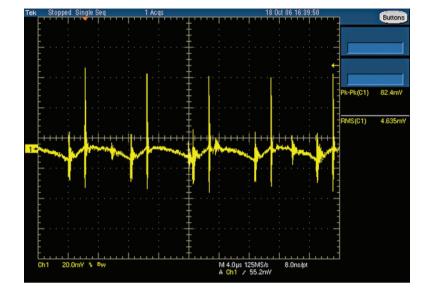


Figure 6 V1 MFA350PS12 (full load) 80 mV pk-pk ripple. 20 MHz BW

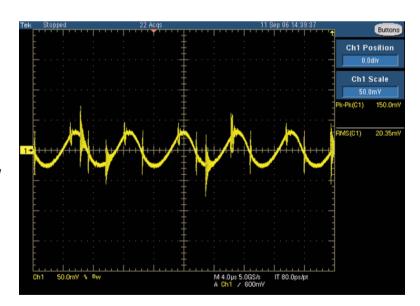


Figure 7 V1 MFA350PS48 (full load) 150 mV pk-pk ripple. 20 MHz BW

General Specifications

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Efficiency		86		%	Full load (see fig. 8 & 9)
Isolation: Input to Output	3000			VAC	
Input to Ground	1500			VAC	
Output to Ground	100			VDC	
Switching Frequency: PFC		62		kHz	
Main Converter		157		kHz	
Power Density			11.1	W/in³	
Mean Time Between Failure		460		kHrs	MIL-HDBK-217F, Notice 2 +25 °C GB
Weight			1.35 (612)	lb (g)	

Characteristic	Notes & Conditions
Signals	
AC OK/Powerfail	Open collector referenced to output 0V, transistor normally off when AC is good (see fig. 10, 16, 17 & 18) AC OK: Provides ≥ 5 ms warning of loss of output from AC failure
DC OK	Open collector referenced to 0 V, transistor normally off when DC is good (see fig. 11, 19 & 20). Provides warning of DC output failure
Remote On/Off (Inhibit/Enable)	Remotely switches outputs off, can also be configured as enable (see fig.12)
Current Share	Up to 3 supplies can be connected in parallel. Output current is shared within 10% at full load. Derate overall output current to 90% when used in parallel (see fig.13, 14 & 15)
Remote Sense	Compensates for 0.5 V total voltage drop

Efficiency Versus Load

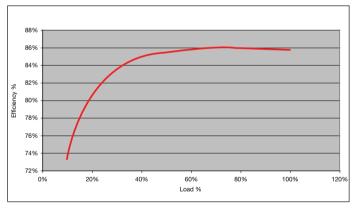


Figure 8 MFA350PS12 @ 230 VAC

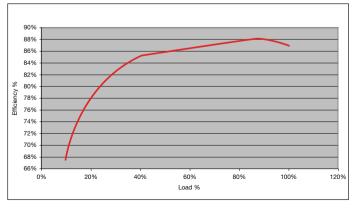
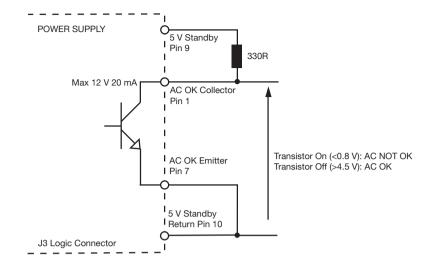



Figure 9 MFA350PS48 @ 230 VAC

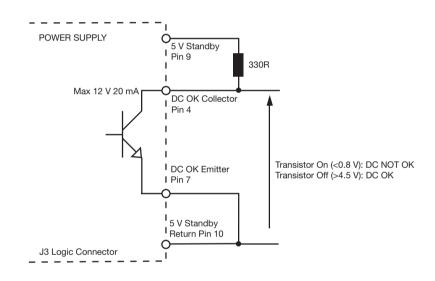

AC OK/Power Fail

Figure 10

DC OK

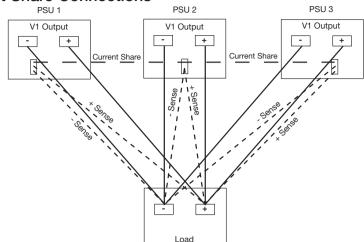
Remote On/Off (Inhibit)

See page 12
Mechanical Details
for location

Pin 2

Pin 7

J3 Logic Connector


Figure 12

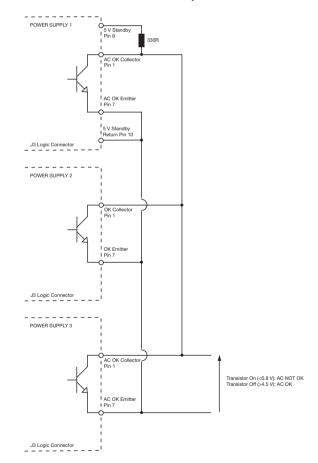
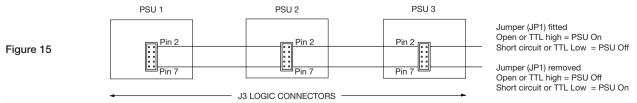
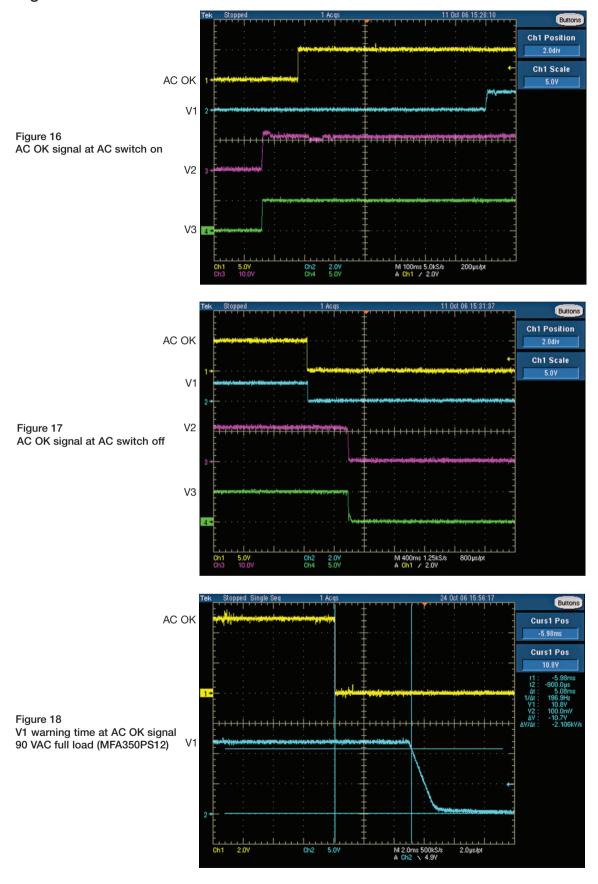
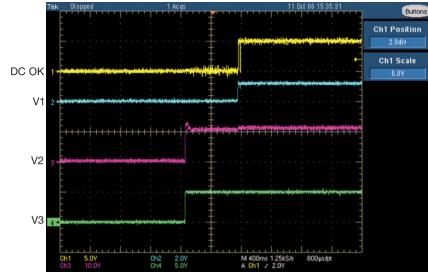
Jumper (JP1) fitted (standard) Open or TTL high = PSU On Short circuit or TTL Low = PSU Off

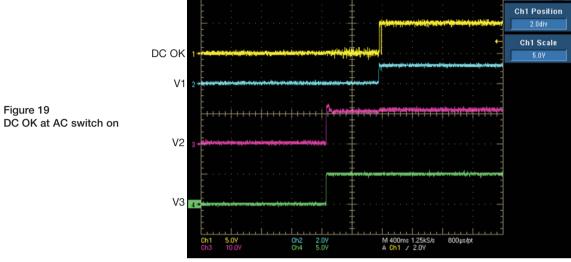
Jumper (JP1) removed Open or TTL high = PSU Off Short circuit or TTL Low = PSU On

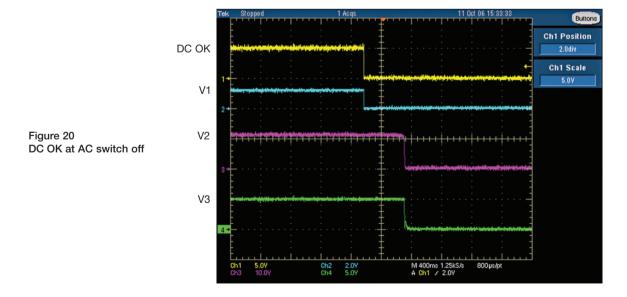
Figure 13

Parallel Load & Current Share Connections

Parallel AC OK Connection (DC OK follows same format)

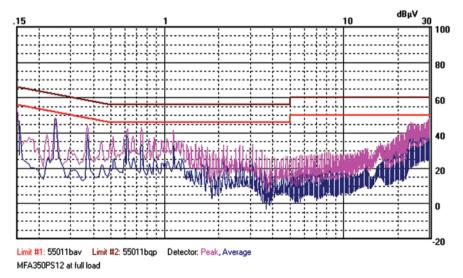

Figure 14


Parallel Remote On/Off (Inhibit) Connection

Environmental

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Operating Temperature	-10		+70	°C	Derate linearly from +50 °C at 2.5%/°C to 50% at 70 °C when forced cooled. See Thermal Considerations.
Storage Temperature	-20		+85	°C	
Cooling	13			CFM	U Channel VersionTF & -EF models have integral fan. See Thermal Considerations for U Channel.
Humidity	5		95	%RH	Non-condensing
Operating Altitude			3000	m	
Shock					3 x 30 g/11 ms shocks in both +ve & -ve directions along the 3 orthogonal axis, total 18 shocks.
Vibration					Single axis 10-500 Hz at 2 g x 10 sweeps

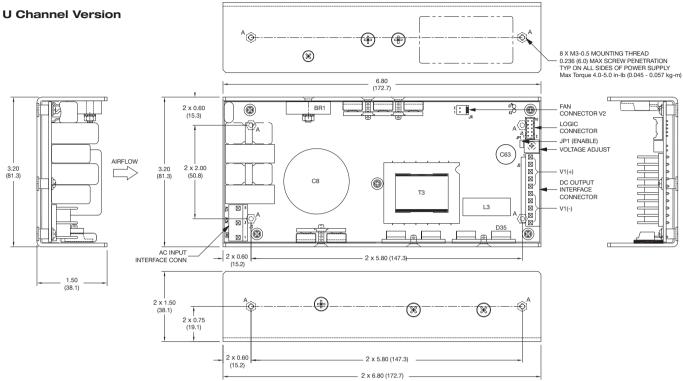
Electromagnetic Compatibility - Immunity

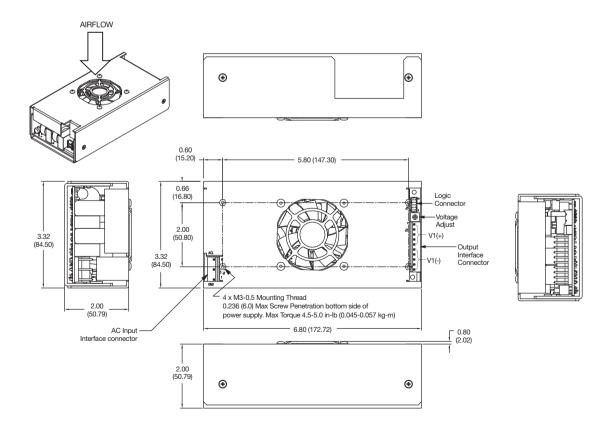

Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Harmonic Current	EN61000-3-2	Class A		
Transforme Current		Class C		For loads ≥20%
EFT	EN61000-4-4	3	A	
Surges	EN61000-4-5	Installation Class 3	А	
Conducted	EN61000-4-6	10 V rms	A	
		30% 10 ms	A	
Dips and Interruptions	EN61000-4-11	60% 100 ms	В	
		100% 5000 ms	В	

Electromagnetic Compatibility - Emissions

Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Conducted	EN55032	Class B		See fig. 21
Radiated	EN55032	Class A		
Voltage Fluctuations	EN61000-3-3			

Typical EMC Plot

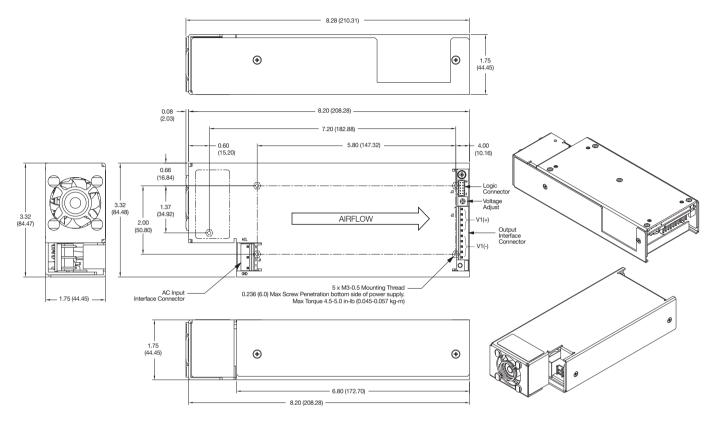

Figure 21


Safety Agency Approvals

Safety Agency	Safety Standard	Category
CB Report	IEC60950-1:2005 Ed 2 / IEC62368-1:2014	Information Technology
CSA	CAN/CSA C22.2 No. 62368-1-14	Information Technology
UL	UL 62368-1	Information Technology
TUV	EN62368-1:2014/A11:2017	Information Technology
CE	LVD	

Mechanical Details

Top Fan Version (Suffix TF)



Notes

- 1. All dimensions in inches (mm).
- 2. Tolerance: $X.XX = \pm 0.02 \ (\pm 0.50), \ X.XXX = \pm 0.01 \ (\pm 0.25)$

Mechanical Details

End Fan Version (Suffix EF)

Notes

- 1. All dimensions in inches (mm).
- 2. Tolerance: $X.XX = \pm 0.02 \ (\pm 0.50), X.XXX = \pm 0.01 \ (\pm 0.25)$

Mechanical Details - Pin Connections

PIN CONNECTIONS				
	AC INPUT J1			
AMP/	AMP/TE CONN = 640445-5			
1	GND			
3	Neutral			
5	Line			

Mating Parts:
AMP/TE CONN Housing = 640250-5
Contact 350980-1

Option '-S' screw terminals Phoenix Contact: MKDS 1/5-3.81 or similar accepts 26-16 AWG wire (contacts 2 & 4 removed)

Max Torque 1.73 in-lb (0.02 kg-m)

	PIN CONNECTIONS DC OUTPUT J2				
AMP/T	E CONN = 1-640445-0				
1	+V1				
2	+V1				
3	+V1				
4	+V1				
5	+V1				
6	-V1				
7	-V1				
8	-V1				
9	-V1				
10	-V1				

Mating Parts: AMP/TE CONN = 1-640250-0 Contact 350980-1

Option '-S' screw terminals 2 x Phoenix Contact: MKDS 1/5-3.81 or similar accepts 26-16 AWG wire

Max Torque 1.73 in-lb (0.02 kg-m)

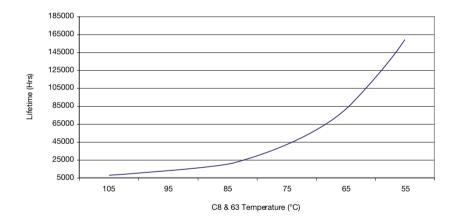
	PIN CONNECTIONS LOGIC CONNECTOR J3				
	10B-PHDSS (LF) (SN)				
1	AC OK				
2	ROF (Inhibit/Enable)				
3	Current Share				
4	DC OK				
5	Not used				
6	+Sense				
7	-Sense				
8	Not Used				
9	5 V Standby V3				
10	5 V Standby Return V3				

Mating Parts: JST Housing PHDR-10VS Contact SPHD-001T-P0.5

PIN CONNECTIONS FAN OUTPUT J4 Molex 22-04-1021			
1 -V2			
2	+V2		

Mating Parts: Molex Housing 22-01-1024 Contact 08-70-0057

Thermal Considerations (U Channel)


In order to ensure correct and reliable operation of the PSU in the most adverse conditions permitted in the end-use equipment, the temperature of the components listed in the table below must not be exceeded. See drawing on page 12 for component locations. Temperature should be monitored using K type thermocouples placed on the hottest part of the component (out of any direct air flow).

Temperature Measurements (Ambient ≤ 50 °C)					
Component	Max Temperature °C				
T3	90 °C				
BR1	105 °C				
D35	85 °C				
L3	90 °C				

Service Life

The estimated service life of the MFA350 is determined by the cooling arrangements and load conditions experienced in the end application. Due to the uncertain nature of the end application this estimated service life is based on the actual measured temperature of two key capacitors within the product when installed in the end application. The highest of the two component temperatures should be used. The graph below expresses the estimated lifetime for a given component temperature and assumes continuous operation at this temperature.

Estimated Service Life vs Component Temperature

- Screw Terminals Available
- U Channel & Cover Fan Formats
- High Power Density 11.1 W/in³
- 5 V Standby & 12 V Fan Outputs
- Active Current Share
- Remote On/Off
- AC & DC OK Signals
- -10 °C to +70 °C Operation
- Level B Conducted Emissions

The MFA350 has been designed with multiple mechanical options to facilitate its integration into a wide range of applications. Designers of these systems demand higher power from AC-DC units in industry-standard formats as processing power and functionality grows within tight space constraints. The MFA350 delivers over 350 W across the full universal AC input range from an industry-standard 3.2 x 6.8 inch (81.3 x 172.7 mm) footprint. It is 1.5 inches (38.1 mm) high and achieves 11.1 Watts per cubic inch power density without compromising performance or functionality.

With efficiency up to 88% at full load, the MFA350 operates up to 50 °C ambient and up to 70 °C ambient with derating. The main output is 12, 24 or 48 VDC but each power supply also has a 5 V, 0.3 A standby output and a 12 V, 1A output for powering fans. The unit incorporates a fully featured signal set including AC OK/DC OK, remote on/off and active current sharing.

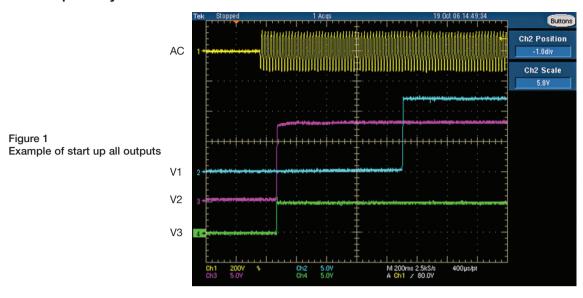
Models and Ratings

Output Voltage V1	Maximum Output Current	Fan Output ⁽²⁾ V2	Standby Supply V3	Max Power 13 CFM Airflow	Model Number (1)
12.0 VDC	29.0 A	12 V/1 A	5 V/0.3 A	361 W	MFA350PS12
24.0 VDC	14.5 A	12 V/1 A	5 V/0.3 A	361 W	MFA350PS24
48.0 VDC	7.3 A	12 V/1 A	5 V/0.3 A	364 W	MFA350PS48

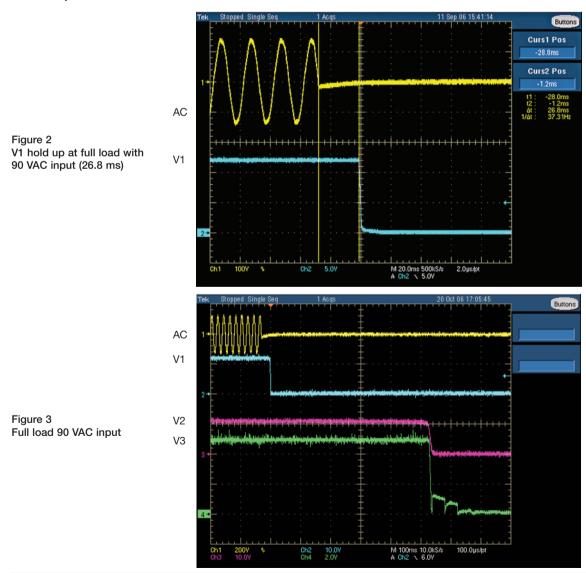
Notes

1. Units supplied with AMP/TE connections for J1 & J2 as standard. Add suffix '-S' to model number to replace with screw terminals. Add suffix '-TF' for covered version with top fan and suffix '-EF' for covered version with end fan. Example:- MFA350PS12-STF, 12 V unit fitted with screw terminals and top fan.

2. Not available for -TF & -EF versions.


Input Characteristics

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Input Voltage - Operating	85		264	VAC	Derate output power 10% < 90 VAC
Input Frequency	47	50/60	63	Hz	
Power Factor		>0.9			EN61000-3-2 class A
	70.9	>0.9			EN61000-3-2 class C for loads ≥20%
Input Current - No Load		100		mA	
Input Current - Full Load		3.6/1.8		А	115/230 VAC
Inrush Current			60	А	230 VAC cold start
Earth Leakage Current		1		mA	230 VAC/50 Hz
Input Protection	T6.3A/250 V internal fuse in line				


Output Characteristics

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Output Voltage - V1	12		48	VDC	See Models and Ratings table
Initial Set Accuracy			±1 (V1), ±5 (V2) & ±3 (V3)	%	
Output Voltage Adjustment	±10			%	
Minimum Load	0				No minimum load required
Start Up Delay		1	2	S	90 VAC full load (see fig. 1)
Hold Up Time	16	20		ms	90 VAC full load (see fig. 2 & 3)
Drift			±0.2	%	After 20 min warm up
Line Regulation			±0.5(V1), ±3(V2) & ±3(V3)	%	
Load Regulation			±1 (V1), ±5 (V2) & ±3 (V3)	%	0-100% load. V2 10-100% load
Transient Response - V1			4	%	Recovery within 1% in less than 500 µs for a 50-75% and 75-50% load step
Over/Undershoot - V1			1	%	(see fig. 4)
Ripple & Noise			1 (V1 & V3) & 2 (V2)	% pk-pk	20 MHz bandwidth (see fig. 6 & 7)
Overvoltage Protection	115		140	%	Vnom DC. Output 1 only, recycle input to reset
Overload Protection	110		140	% I nom	Output 1 only, auto reset (see fig. 5)
Short Circuit Protection					Continuous
Temperature Coefficient			0.05	%/°C	
Overtemperature Protection		75		°C	Thermal sensor under PCB

Start Up Delay From AC Turn On

Hold Up Time From Loss of AC

Output Overshoot

Figure 4 Typical Output Overshoot (MFA350PS12)

Output Overload Characteristic

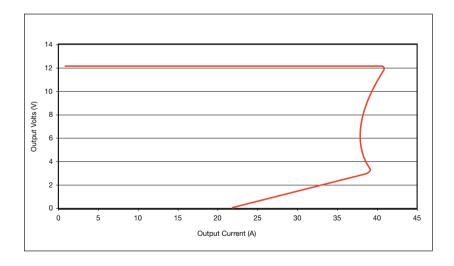


Figure 5

Output Ripple & Noise

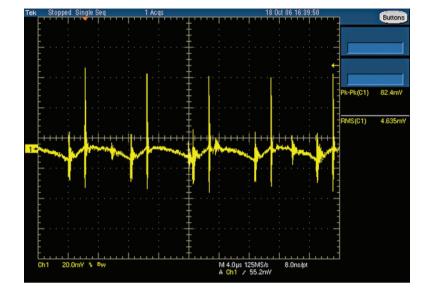


Figure 6 V1 MFA350PS12 (full load) 80 mV pk-pk ripple. 20 MHz BW

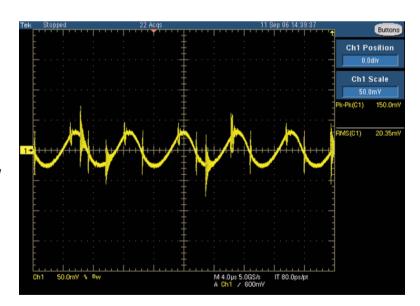


Figure 7 V1 MFA350PS48 (full load) 150 mV pk-pk ripple. 20 MHz BW

General Specifications

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Efficiency		86		%	Full load (see fig. 8 & 9)
Isolation: Input to Output	3000			VAC	
Input to Ground	1500			VAC	
Output to Ground	100			VDC	
Switching Frequency: PFC		62		kHz	
Main Converter		157		kHz	
Power Density			11.1	W/in³	
Mean Time Between Failure		460		kHrs	MIL-HDBK-217F, Notice 2 +25 °C GB
Weight			1.35 (612)	lb (g)	

Characteristic	Notes & Conditions
Signals	
AC OK/Powerfail	Open collector referenced to output 0V, transistor normally off when AC is good (see fig. 10, 16, 17 & 18) AC OK: Provides ≥ 5 ms warning of loss of output from AC failure
DC OK	Open collector referenced to 0 V, transistor normally off when DC is good (see fig. 11, 19 & 20). Provides warning of DC output failure
Remote On/Off (Inhibit/Enable)	Remotely switches outputs off, can also be configured as enable (see fig.12)
Current Share	Up to 3 supplies can be connected in parallel. Output current is shared within 10% at full load. Derate overall output current to 90% when used in parallel (see fig.13, 14 & 15)
Remote Sense	Compensates for 0.5 V total voltage drop

Efficiency Versus Load

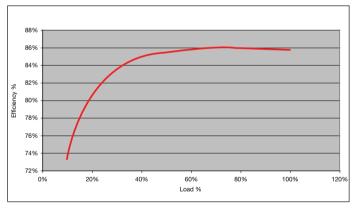


Figure 8 MFA350PS12 @ 230 VAC

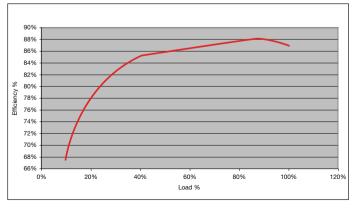
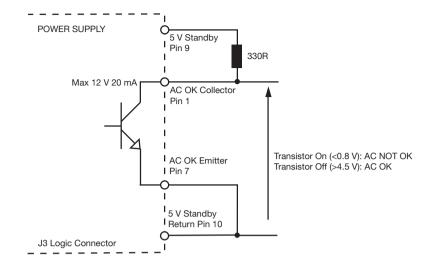



Figure 9 MFA350PS48 @ 230 VAC

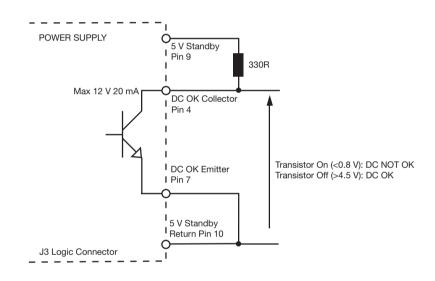

AC OK/Power Fail

Figure 10

DC OK

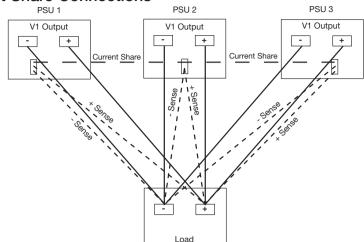
Remote On/Off (Inhibit)

See page 12
Mechanical Details
for location

Pin 2

Pin 7

J3 Logic Connector


Figure 12

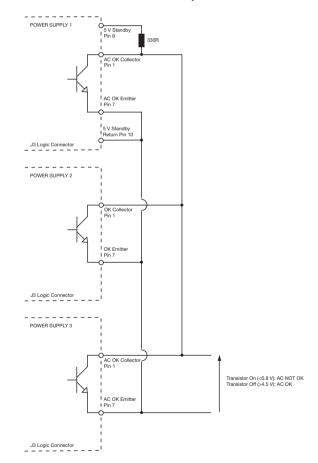
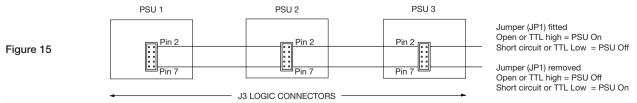
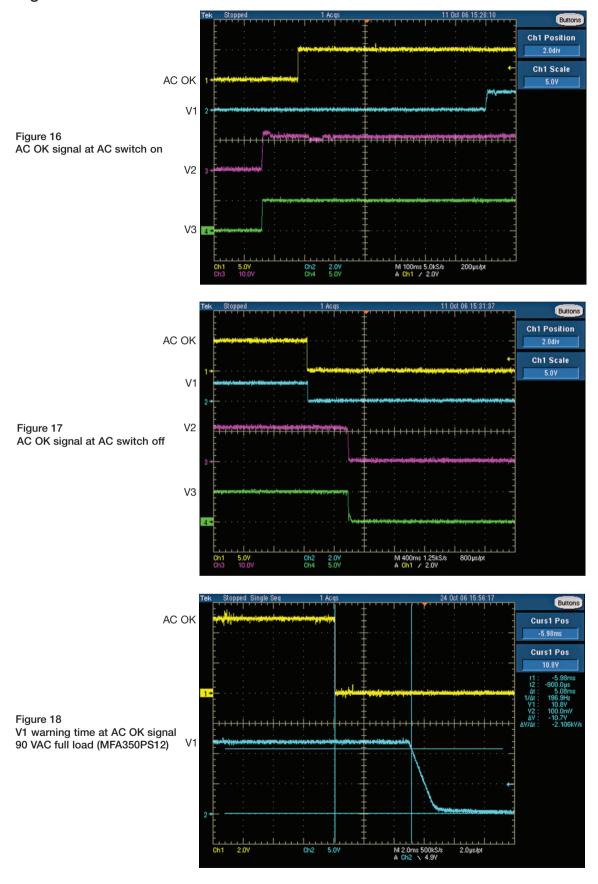
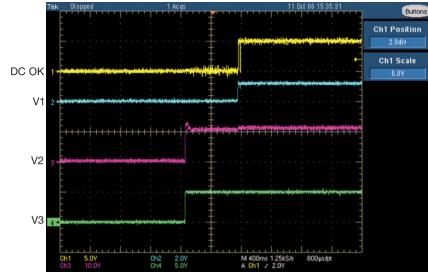
Jumper (JP1) fitted (standard) Open or TTL high = PSU On Short circuit or TTL Low = PSU Off

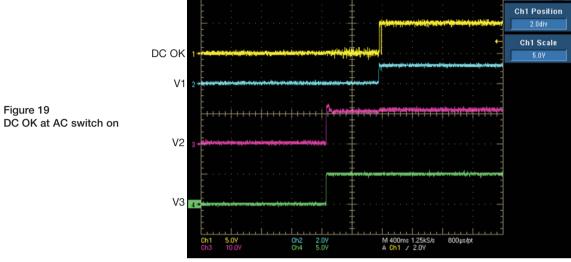
Jumper (JP1) removed Open or TTL high = PSU Off Short circuit or TTL Low = PSU On

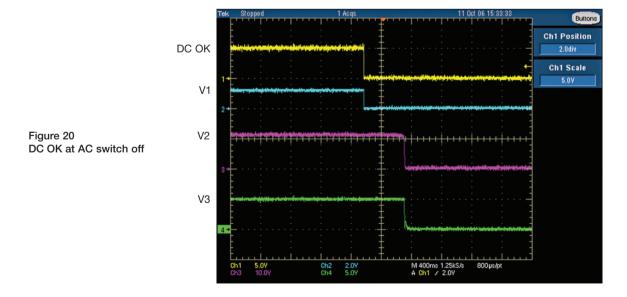
Figure 13

Parallel Load & Current Share Connections

Parallel AC OK Connection (DC OK follows same format)

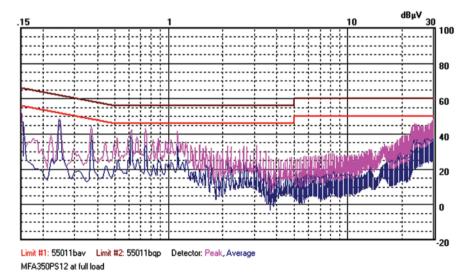

Figure 14


Parallel Remote On/Off (Inhibit) Connection

Environmental

Characteristic	Minimum	Typical	Maximum	Units	Notes & Conditions
Operating Temperature	-10		+70	°C	Derate linearly from +50 °C at 2.5%/°C to 50% at 70 °C when forced cooled. See Thermal Considerations.
Storage Temperature	-20		+85	°C	
Cooling	13			CFM	U Channel VersionTF & -EF models have integral fan. See Thermal Considerations for U Channel.
Humidity	5		95	%RH	Non-condensing
Operating Altitude			3000	m	
Shock					3 x 30 g/11 ms shocks in both +ve & -ve directions along the 3 orthogonal axis, total 18 shocks.
Vibration					Single axis 10-500 Hz at 2 g x 10 sweeps

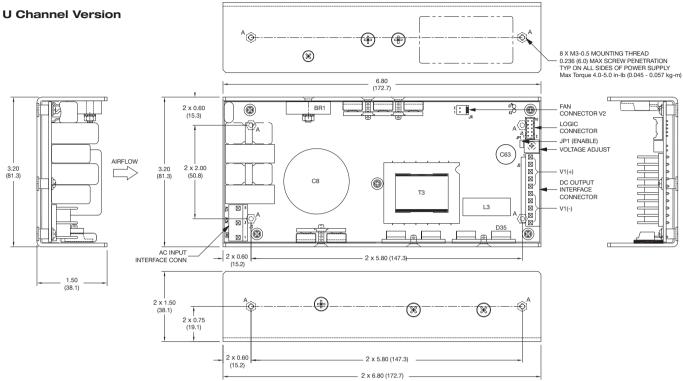
Electromagnetic Compatibility - Immunity

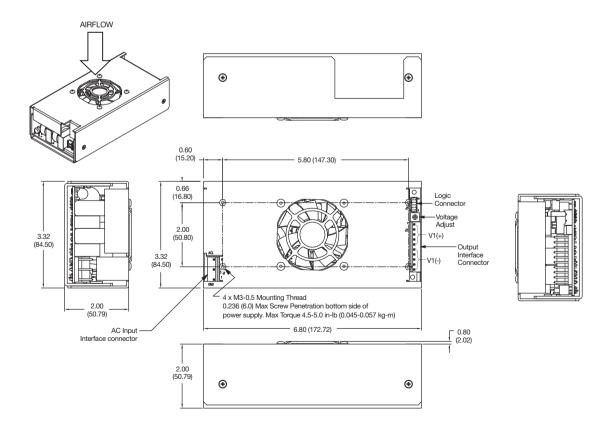

Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Harmonic Current	EN61000-3-2	Class A		
Harmonic Current	LINO 1000-3-2	Class C		For loads ≥20%
EFT	EN61000-4-4	3	A	
Surges	EN61000-4-5	Installation Class 3	A	
Conducted	EN61000-4-6	10 V rms	A	
		30% 10 ms	A	
Dips and Interruptions	EN61000-4-11	60% 100 ms	В	
		100% 5000 ms	В	

Electromagnetic Compatibility - Emissions

Phenomenon	Standard	Test Level	Criteria	Notes & Conditions
Conducted	EN55032	Class B		See fig. 21
Radiated	EN55032	Class A		
Voltage Fluctuations	EN61000-3-3			

Typical EMC Plot

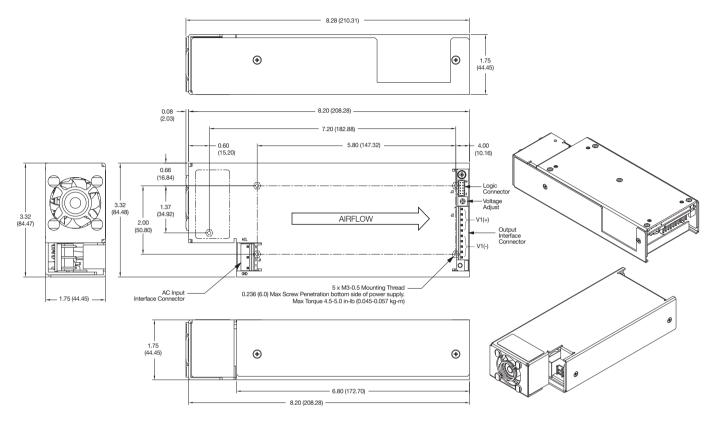

Figure 21


Safety Agency Approvals

Safety Agency	Safety Standard	Category
CB Report	IEC60950-1:2005 Ed 2 / IEC62368-1:2014	Information Technology
UL/CSA	UL 62368-1 / CAN/CSA C22.2 No. 62368-1-14	Information Technology
TUV	EN62368-1:2014/A11:2017	Information Technology
CE	LVD	

Mechanical Details

Top Fan Version (Suffix TF)



Notes

- 1. All dimensions in inches (mm).
- 2. Tolerance: $X.XX = \pm 0.02 \ (\pm 0.50), \ X.XXX = \pm 0.01 \ (\pm 0.25)$

Mechanical Details

End Fan Version (Suffix EF)

Notes

- 1. All dimensions in inches (mm).
- 2. Tolerance: $X.XX = \pm 0.02 \ (\pm 0.50), X.XXX = \pm 0.01 \ (\pm 0.25)$

Mechanical Details - Pin Connections

PIN CONNECTIONS				
	AC INPUT J1			
AMP/	AMP/TE CONN = 640445-5			
1	1 GND			
3	3 Neutral			
5	Line			

Mating Parts:
AMP/TE CONN Housing = 640250-5
Contact 350980-1

Option '-S' screw terminals Phoenix Contact: MKDS 1/5-3.81 or similar accepts 26-16 AWG wire (contacts 2 & 4 removed)

Max Torque 1.73 in-lb (0.02 kg-m)

PIN CONNECTIONS DC OUTPUT J2		
AMP/TE CONN = 1-640445-0		
1	+V1	
2	+V1	
3	+V1	
4	+V1	
5	+V1	
6	-V1	
7	-V1	
8	-V1	
9	-V1	
10	-V1	

Mating Parts: AMP/TE CONN = 1-640250-0 Contact 350980-1

Option '-S' screw terminals 2 x Phoenix Contact: MKDS 1/5-3.81 or similar accepts 26-16 AWG wire

Max Torque 1.73 in-lb (0.02 kg-m)

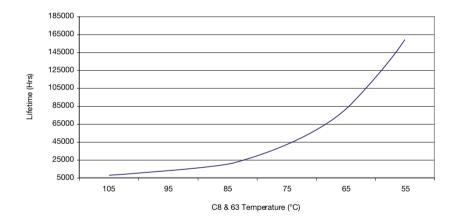
PIN CONNECTIONS LOGIC CONNECTOR J3		
JST B10B-PHDSS (LF) (SN)		
1	AC OK	
2	ROF (Inhibit/Enable)	
3	Current Share	
4	DC OK	
5	Not used	
6	+Sense	
7	-Sense	
8	Not Used	
9	5 V Standby V3	
10	5 V Standby Return V3	

Mating Parts: JST Housing PHDR-10VS Contact SPHD-001T-P0.5

PIN CONNECTIONS FAN OUTPUT J4 Molex 22-04-1021	
1	-V2
2	+V2

Mating Parts: Molex Housing 22-01-1024 Contact 08-70-0057

Thermal Considerations (U Channel)


In order to ensure correct and reliable operation of the PSU in the most adverse conditions permitted in the end-use equipment, the temperature of the components listed in the table below must not be exceeded. See drawing on page 12 for component locations. Temperature should be monitored using K type thermocouples placed on the hottest part of the component (out of any direct air flow).

Temperature Measurements (Ambient ≤ 50 °C)		
Component	Max Temperature °C	
T3	90 °C	
BR1	105 °C	
D35	85 °C	
L3	90 °C	

Service Life

The estimated service life of the MFA350 is determined by the cooling arrangements and load conditions experienced in the end application. Due to the uncertain nature of the end application this estimated service life is based on the actual measured temperature of two key capacitors within the product when installed in the end application. The highest of the two component temperatures should be used. The graph below expresses the estimated lifetime for a given component temperature and assumes continuous operation at this temperature.

Estimated Service Life vs Component Temperature

